
!

Center for Turbulence Research
Annual Research Briefs 1993

11 269
/1 J .____

N 1 ,-3

Transition to turbulence in an elliptic vortex

By T. S. Lundgren 1 AND N. N. Mansour

1. Motivation and objectives

We study the three dimensional instability and nonlinear growth of the two-

dimensional flow described by the streamfunction

A sin bl x sin b2y

= b_ + b_ (1)

where bl = 7riLl, b2 = 7r/L2. This is a swirling flow in a box which is bounded by

0 < x < L1, 0 < y _< L2 and is infinite in the z direction. This flow is a solution

of the Navier-Stokes equation with A = exp(-v(b_ + b_)t) which slowly decays.

We seek a viscous solution which starts near this one and slips along but does not

penetrate the bounding walls. The vorticity of the basic flow is wz = A sin bl x sin b2y

which has maximum value A at the center of the box and drops to zero at the

boundaries. We can think of the resulting flow as that of a captive vortex.

Denote E = L1/L2. What is interesting about this flow is that when E _ 1,

it is unstable to three-dimensional disturbances. Periodic waves grow along the

z direction, causing the captive vortex to distort into a snake-like configuration.

Components of vorticity perpendicular to the z axis grow. As the instability grows,

we find that the vorticity becomes increasingly sheet-like. Ultimately, the sheets

break up into a turbulent mixture of intense vortex tubes. When E = 1, the flow

is completely stable.

The streamline pattern of the basic flow is elliptical in the central part of the box,

with aspect ratio E, becoming more rectangular as the boundaries are approached.

Figure 1 shows the streamline pattern when E = 2. Bayly (1989) has shown analyt-

ically and numerically that the flow is unstable to high wavenumber disturbances

when the Reynolds number is large. At high wavenumber, the instability in this

bounded geometry is similar to the broad band instability in an unbounded flow

with elliptical streamlines and uniform vorticity studied by Pierrehumbert (1986),

Bayly (1986), Waleffe (1989, 1990), and Landman and Saffman (1987). The mecha-

nism for the instability is a resonance between inertial oscillations, which can exist

when the streamlines are circular, and the periodicity introduced by the ellipticity.

The work which motivated these studies was that of Orszag and Patera (1983).

They numerically found a three-dimensional instability on a flow which is a super-

position of a Tollmein-Schlichting wave and the Blasius boundary layer flow. This

flow contains an elongated elliptically shaped swirling region. It is believed that the
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FIGURE 1. Streamline pattern and vortieity contours for E -- 2. The tick marks

are at .6 intervals in the x-direction and .4 intervals in the y-direction.

wavy instability which develops explains the generation of streamwise vorticity in

boundary layer transition.

An even earlier work of Gledzer et al. (1974, 1975) showed instability in a swirling

flow within an elliptic cylinder. The experiment consisted of rotating a water-filled

elliptic cylinder until solid Body rotation was achieved. Upon stopping the rotation,

the water continues to rotate with approximately elliptical streamlines. It was

observed that the flow rapidly developed swirls perpendicular to the rotation axis,

with one or more cells depending on the length of the cylinder. Malkus (1989) did

clever experiments with a water-filled flexible cylinder which was made eUiptical by

rotating it between stationary rollers. In this flow, the unstable wave rapidly flashes
into small scale turbulence.

There is another class of flows which is closely related to the present work. This

is the bending instability of a sharp-edged vortex with uniform vorticity exposed to

a transverse straining flow treated by Widnall, Bliss and Tsai (1974), Moore and

Saffman (1975), and Robinson and Saffman (1984). In this flow, wavy disturbances,

comparable in length to the dimensions of the vortex, grow on the vortex. In the

absence of the straining flow, non-rotating planar waves exist. The strain causes

such a wave to align with and grow along the plane of maximum strain rate. In our

flow, the vorticity distribution rises smoothly to a maximum at the center instead

of being sharp-edged, and there are finite boundaries; nevertheless, some of the

stability results are very similar.

In the present work, we show numerically that the basic flow described by Eq.

(1) is unstable at modest axial wavenumbers when the Reynolds number is greater

than a critical value. In section 2, we present stability diagrams which superficiMly

resemble those for two-dimensional parallel flows. In section 3, we present the

results of a nonlinear computation which clearly shows transition to turbulent flow.

2. Stability

For the stability problem, we set A = 1, neglecting the slow decay. This is similar
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to the traditional method of studying the stability of a growing boundary layer by

treating it as a parallel flow. In the usual way, we decompose the velocity field into

the velocity field U of the basic flow plus a small perturbation u'. The linearized

equations for u' are

V.ut=0 (2)
0u'

-_- + V. (Uu' + u'U) = -Vp'+ uV_u '. (3)

We separate variables in the form

OQ

u' =expikzz 1 E fi(rn, n)expi(mbax +nb2y)
Ul m,n=c_

(4)

oo

v' = expikzz -_2m E,n:=_c_(m'n)expi(mblx + nb2y) (5)

w' = expikzz E Cv(m,n)expi(mblx + nb2y) (6)

with a similarly defined pressure variable. (Note that we have suppressed the time

dependence in fi,5 and tb.) Upon equating coefficients of exp i(kzz + rnblx + nb2g)

and using the continuity equation to eliminate the pressure, we get the following
equations:

Off(re, n) blb2R_(m,n)

o_ b_+ b_
- r(m2b_ + n2b_ + k2,) 5(m, n) (7)

where

and

O9(m,n) blb,zRu(m,n )
- - _,(m_b_+ n_b_+ k_) _(_, ,_) (s)

0_ b_+ b_

R_(rn, n) = F(m,n) - mb2(rnF + nG + k_H)
m_b_+ ,_b_ + k_

Ru(rn, n) = a(m, n) - nb2(mF + na + k,H)
rn2b 2 + n2b_ + k2z

(9)

(lo)

F(m, n) = ---
m

2 ['fi(m-l,n-1)+h(m-l,n+l)-it(m+l,n-1)-h(m+l,n+l)]

n

+-_ [fi(m - 1,n - 1) - fi(m - 1,n + 1)+ fi(m + 1,n - 1) -fi(m + 1,n + 1)]

__n [t3(m - 1 n - 1) +b(m - 1,n + 1) -b(m + 1,n - 1) - _?(m + 1,n + 1)]
4
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kz [_(m- l,n-1)-t-_(rn- l,n+ l)-Cv(m-I- l,n-1)-Cv(m-t- l,n-t-1)] (11)
4

rn [_(rn-l,n- l)-l-_(m- l,n-l-l)-fJ(m-l-l,n-1)-_(m-l- l,n-l-1)]G(m,n) = -_

n

+2 [fiCrn - 1,n - 1) - _(rn - 1,n + 1) + _(rn + 1,n - 1) - _(rn + 1,n + 1)]

m

+_ [,a(m - 1,n - 1) - a(m - 1,n + 1) + ,a(m + 1,n - 1) - a(m + 1,n + 1)]

k, [_(m-l,n-1)-_(m-l,n+ l)+fo(m+ l,n-1)-6,(m+ l,n+ l)] (12)+2-

m [tb(m-l,n-1)+fv(m-l,n+l)-fv(m+l,n-1)-fo(m+l,n+l)]
H(m,n) = -_

n

+_- [tb(m- 1,n - 1)- _(m - 1,n + 1)+ d,(m + 1,n - 1)- ,Z,(rn+ 1,n + 1)](13)

and, everywhere, tb(m, n) is given by

m fi(m, n) + n _,(m, n)
ff_(m, n ) = - k,

(14)

Since @ can be eliminated from Rx and Ry by means of the last equation, Eqs. (7)

and (8) are a system of linear equations for fi(m, n) and _3(m, n) for-oo < m, n < o¢.
The conditions that the bounding box be impenetrable requires that u' be zero

for x = 0 and L1 for all y and z, and v' be zero for y = 0 and L2 for all x and

z. A consistent set of symmetry conditions which ensure these constraints are the

following, for all integer values of m, n,

fi(-m,n) = -a(m,n) (15)

_(-m, n) = _(rr,, n)

_(-m, n) = _(m, n)

fi(m, -n) = fi(m, n)

fi(m,-n) = -f)(m,n)

d,(m, -n) = _b(rn, n).

(16)

(17)

(is)

(18)

(19)

It follows from these that fi(0, n) = _(m,0) = 0 and that fi(0,0) = 9(0,0) = 0.

It can be shown that these conditions persist if they are satisfied by the initial
conditions. These conditions mean that Eqs. (7) and (8) only have to be solved

on the first quadrant of the m, n plane, i.e., m = 0, 1, 2,..., N, n = 0, 1,2,..., N,
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where N is a large integer where we truncate the system. For instance, if we write

Eq. (7) with m = 0 and some n, this would require F(0, n), and from Eq. (11) we
see that we would need fi(-1, n - 1). From Eq. (15), this is equal to -fi(1, n - 1),
which is within the solution set. In general, the column m = -1 and the row n = -1
are shifted into the solution set.

From the structure of the equations, one can see that an equation for mode (m, n)

is only coupled to four neighboring modes (m - 1, n - 1), (m - 1, n + 1), (m + 1, n - 1),
and (m + 1, n + 1). These are the nearest four on diagonal lines through (m, n), and

these four are each coupled to the nearest four on its diagonals, and so on. This
means that the modes can be decomposed into two independent "checkerboard"

subsets, the "even" modes where m + n is an even integer and the "odd" modes

where m + n is an odd integer. This was pointed out by Bayly (1989).

In the numerical work, we have taken E = 2 and set the length and time scales by
taking the maximum vorticity of the basic flow to be unity (A = 1) and LI = 5.6,

L2 = 2.8. The Reynolds number is v -1 in this dimensionless scheme. One could,
of course, rescale the box so that one of the sides has unit length and rescale the

Reynolds number and wavenumbers accordingly. The reason for our particular
choice was determined by the requirements of the nonlinear code which will be
described in the next section.

Equations (7) and (8) were solved by a second order Runge-Kutta method over
a range of values of the parameters R, and ks. Even or odd modes were excited

by taking initial conditions in which all the mode amplitudes were zero except

fi(2,0) = 1 to generate even modes or fi(1, 0) = 1 for odd modes. Energy growth
rates/3 were computed from

fl = lim In(energy)
t (20)

where "energy" is the sum of the squares of all the mode amplitudes. It was nec-

essary to integrate for a long time to approach an asymptote in this formula. Over

the range computed, we have found that the cutoff N = 40 was adequate. The

results are presented in two figures. Figure 2 shows the neutral curve (/3 = 0) for
both even and odd modes up to Reynolds numbers of 2000. The band of unstable

wavenumbers rapidly expands with increasing Reynolds number. Figure 3 shows

the growth rate fl versus wavenumber kz at Reynolds number 2000. Computations
at Reynolds numbers 200, 500, and 1000 are similar, with a pronounced notch in

the odd mode curve. The growth rate curves computed by Robinson and Saffman

(1984) for the strained vortex have a similar shape made up of the union of sepa-

rate growth rate curves for modes with differing internal structure, which look like

inverted parabolas. The growth rate at their second peak (multiplying their result
by 2 to get energy growth rate) is about .3 for E = 2, which is comparable to our
value of about .24.

A result for unstable plane waves in the unbounded flow with elliptical streaallines
may be obtained from Landman and Saffman (1987). The result is

_0 = - vK 2) (21)2( ao
too
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FIGURE 2. Neutral stability curves, E = 2: -- even modes; ........ odd modes.

Heavy dot is at Re number and lowest wave number used in the computation.
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FIGURE 3. Growth rate versus axial wavenumber at Re = 2000, E = 2: -- even

modes; ........ odd modes. Vertical dash is at the lowest wave number used in the

computation.

where w0 is the uniform vorticity, a0 is the inviscid amplitude growth rate, and

K 2 = k_ + k_ + k_. The factor two is inserted to convert to energy growth rate.
Now ao/wo is a function of e/7/[= (E 2 - 1)/(E 2 + 1)] where e is strain rate and

is wo/2. For e/7 < .7(E < 2.4), it is approximately

ao 1(9 (_)(_)2)wo -fi 1-6 -.1 . (22)
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For an unstable wave with maximum growth rate, the wavevector makes an a_lgle

of 60 ° with the rotation axis; therefore, k_ + k_ = 3k_. Using this and u = l/Re

gives

-- = . (23)
_o

For our case with E = 2 and w0 = I,we get

fl = .3- R---_" (24)

For fixed Re, this gives a curve similar in shape to figure 2 with a maximum of .3

at kz = 0. A neutral curve may be derived from Eq. (24), namely

k.. = .19R_/2. (25)

We can check a few values. At Re = 2000, 1000, 500, and 200 the formula gives

8.50, 6.01, 4.25, and 2.68, which compare with the computed values 8.32, 5.81, 3.92,

and 2.25. The agreement is quite good at the larger Reynolds numbers. Equations

(24) and (25) should allow a reasonable extrapolation to Reynolds numbers larger

than those for which we have computed.

We conclude that the stability results are similar to those for bending waves on a

concentrated vortex at small wavenumbers and similar to results for an unbounded

flow with elliptical streamlines at large wavenumber, with comparable growth rates.

3. Transition to turbulence

Nonlinear computations have been performed on the Intel Hypercube (i860) using

a version of Rogallo's (1981) box code (the "pencil" code) written by Rogallo for

this parallel processing machine. This code was designed to solve the Navier-Stokes

equations in a box with periodic boundary conditions. The box is not required

to have equal sides, but must have volume (27r) 3. We will take the sides to be

2L1 x 2L2 x L3 with the x and y dimensions double the size of the impenetrable

box. By using proper symmetry in the initial conditions, we can insure that there

is no flow across the surfaces x = 0, L1 and y = 0, L2. The finite dimension in

the z direction means that L3 is the longest axial wavelength allowed. Defining

bl = 7riLl,b2 = r/L2 as before and ba = 27r/L3, the volume constraint makes

bab2b3 = 1. The parameter b3 is the smallest non-zero axial wavenumber. Allowed

values are kz = b3k, where k is an integer. Solutions in this periodic system are
thus of the form

N

u(x,y, z,t) = E fi(m,n,k)expi(mb, z + nb2v + kb3z) (26)
m,n,k=-N

N

fJ(m,n, k)exp i(rnblx + nb2y + kb3z) (27),,(x,y,z,t)= E
m,n,k=-N



276 T. S. Lundgren and N. N. Mansour

FIGURE 4. Surface of 3/8 max vorticity at T = 55.66. Max vorticity is 2.01.

The tick marks are at .6 intervals in the x-direction and .4 intervals in the y- and
z-direction.

N

w(x,y,z,t) =  (m,n,k)expi(mblx + .b y + kb3z) (2S)
m,n,k=-N

Conjugate symmetry (a(-rn,-n,-k) = fi(m,n, k)*, etc.) is imposed to ensure

that the velocity components are real. Symmetries in the initial conditions like

those in Eqs. (15)-(19) for each k ensure impenetrability of the side walls. For
instance, the velocity field of the basic flow, U = b2sin blx cos b2y/(b 2 + b2), V =

-bl cos blx sin b2y/(b 2 + b_)is generated by the four modes

b2i

r,(1, 1, O) = r,(1,-1, O) = -r,(-1, 1, O) = -r,(-1,-1, O) = 4(b_ + b_)

b2i

_(1, 1,0) = -_(1, -1, 0) = -9(-1, 1,0) = _(-1,-1,0) -- 4(b_ + b_) (29)

which have all these symmetries. Perturbations from this can be generated in many

different ways and will generate different flows. For instance, we could use random
small initial perturbations. For the flow computed here, we excited both even and

odd modes by

u I = .001 sin blx cos bakz + .001 sin 2blx cos b3kz (30)

with v _ = 0 and the corresponding w * determined from continuity, that is,

fi(1, 0, k) = -fi(-1,0, k) = fi(1,0,-k) = -fi(-1, 0,-k) = -.001i/4
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FIGURE 5. Surface of 3/8 max vorticity at T = 61.71. Max vorticity is 2.78. See
Figure 4 for the value of the intervals on the axes.

_(2, 0, k) = -fi(-2, 0, k) = _(2, 0, -k) = -fi(-2, 0,-k) = -.001i/4 (31)

for all integer k. With the cosine dependence in the z direction, the endwalls and
the midplane z = La/2 will also be impenetrable.

Finally, we chose to do the computation with E = 2 = L1/L2 and L3 = _.
The volume constraint then makes L1 -- 5.60, L2 = 2.8, Za = 3.96, and then bl =

•56, b2 = 1.12, and b3 = 1.59. We have computed with Re = 2000 and N = 128.

The lowest wave number in the initial conditions, kz = 1.59, is shown in the stability
diagrams as a circle in figure 2 and as a vertical dashed line in figure 3. It is near
the position of maximum growth rate and was chosen for this reason.

The major results of the computations are presented in figures 4-9, where surfaces

of constant magnitude of the vorticity are shown at 6 different times during the
evolution of this flow. In each figure, the surface is of the vorticity value which is
3/8 of the maximum vorticity at this time. Both the time and the value of the

maximum vorticity are given in the figure legends. The coordinate axes shown have

x to the left, y vertical, and z off to the right. The viewpoint and illumination

are from the origin. At the initial time (not shown), the surface is approximately

an elliptic cylinder. The instability causes distortion into a wave oriented roughly
along a 45 ° plane with the vortex moving downward and toward positive x at the

ends of the box and upward and toward negative x in the middle. The secondary

flow which causes this motion also causes the vortex to be greatly distorted into

sheet-like structures which resemble the "cups" found by Rogers and Moser (1992)

in their study of the development of three-dimensional structure in a mixing layer

after the primary rollup into spanwise rollers. In figures 10a and 10b, we look
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FIGURE 6. Surface of 3/8 max vorticity at T = 70.43. Max vorticity is 5.50. See

Figure 4 for the value of the intervals on the axes.

FIGURE 7. Surface of 3/8 max vorticity at T : 79.09. Max vorticity is 9.61. See

Figure 4 for the value of the intervals on the axes.
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FIGURE 8. Surface of 3/8 max vorticity at T = 83.94. Max vorticity is 13.19. See

Figure 4 for the value of the intervals on the axes.

. .;

_' 4..

FIGURE 9. Surface of 3/8 max vorticity at T = 87.95. Max vorticity is 15.70. See

Figure 4 for the value of the intervals on the axes.



280 T. S. Lundgren and N. N. Mansour

(a) ......... (b/ , .....
x x

FIGURE 10. Vorticity contours at the time corresponding to figure 6; a) on the

plane z = L3/2; b) on the planes z = 0 and z = La. See Figure 1 for the value of
the intervals on the axes.

.

! ! ! ! ! ! ! I r

X

FIGURE 11. Contours of axial velocity on the plane z = La/4 at the time

corresponding to figure 6. Solid contours are positive velocity, dotted contours

are negative velocity. Maximum velocities are -4-.35. See Figure 1 for the value of
the intervals on the axes.

at vorticity contours on cuts through the structure shown in figure 6 in order to

elucidate its structure. In figure 10a, we have taken the cut through the middle of

the structure along the plane z -- L3/2. By symmetry only, the z component of

vorticity is nonzero on this plane. The maximum vorticity in the box, 5.5, occurs

at the center of the rather strong round vortex which is apparent here. In the

three-dimensional rendering this vortex is seen from in front and appears to be like

a horseshoe vortex. The heavier contour line in figure 10a is at the same vorticity

level as the surface in the three-dimensional view. In figure 10b, the cut is at the

ends of the box at planes z = 0 and z = La, where again only w_ is non-zero. The

maximum vorticity in the strong sheet-like structure is 3.5.

In figure 11, we show contours of the axial velocity w in the plane z = L3/4

through the same structure shown in figure 6. This is more regular than we expected

and shows characteristics of the 1,1 mode in Robinson and Saffman (1984). The

first 1 refers to the angular wave number and the second to the number of nodes in

the axial velocity. Here, despite the already complicated vorticity, the underlying

secondary flow of the instability is still evident, much amplified, with maximum

velocities +.35. Since w is zero at both ends of the box and in the middle, and w on

the plane z = 3La/4 is just the reverse of that shown in figure 11, we can picture the

secondary flow as two eddies, one in each half of the box, with the velocity toward
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FIGURE 12.
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the center of the box in the lower part and away from the center above. Completion

of this circulation is such as to smash the vorticity downwards and toward positive

x at the ends while stretching it, and upward and toward negative x in the middle,

stretching it here also. What is remarkable is that this secondary motion is evident

throughout the entire sequence of views, even at the time of figure 9 where it is

quite irregular but with the main trends described above.

As we proceed from figure 6 to figure 7, the strong vortex which was evident in

figure 6 has disappeared. The central part has apparently been carried downward

into the compressive part of the circulation which decreased its vorticity below the

plotting level. The remnants of its sides have been stretched into the shield-shaped

vortex sheets on each side of the center. In the next view, figure 8, there is no

vorticity at the level plotted across the plane z = La/2. This is not clear from

the figure, but when we rotated it we had an open view down the middle. The

structures we see are mostly tubelike now, and this is even more evident in figure

9, which is the time at which the maximum vorticity in the box is largest. At later

times, this begins to decrease, but the tubelike nature of the vorticity is evident

still at the time of 103.8 when we ended the computation.

Figure 12 shows the three dimensional energy spectrum at the time of figure 9.

While this is quite broad, indicating turbulence, we do not see a -5/3 range at this
Reynolds number.

4. Discussion

Our overall impression of this flow is of two large counter-rotating turbulent
eddies, each carrying many intense interacting vortex tubes. One can see the de-

velopment of this pretty clearly in figures 7 and 8, less clearly in figure 9. This

motion was already present as the growing secondary flow of the instability and
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FIGURE 13. Surface of 3/8 max filtered vorticity at T = 87.95. Max filtered

vorticity is 1.19. See Figure 4 for the value of the intervals on the axes.

was the controlling factor in the development of the vortex sheets. To understand

the large scale swirling motion without the masking effect of the small vortices, we

have filtered out the high wavenumber part of the velocity with a Gaussian filter
with width .2. We have computed the magnitude of the vorticity in this filtered

flow at the same time as in figure 9. The result is presented in figure 13 as a surface

of 3/8 of the maximum vorticity, which is 1.19 in this filtered flow. This looks llke
a horseshoe vortex with two vortices wrapping around each of its counterrotating

legs. The head of the vortex, which is lifted up, contains the point of maximum

vorticity. The sense of motion is upward between the legs of the vortex and forward
over the top of the nose, which is the sense of rotation of the original swirling flow.

The evolution of the sheets into tubes appears to be through the Kelvin-Helmhotz

instability, or by the Lin-Corcos (1984) version which includes vortex stretching,

but nothing very dramatic occurs. Local thick spots gradually become thicker and
develop into tubes. In some preliminary computations at higher Reynolds number,

the cup-shaped vortex sheet developed into three clearly defined parallel vortex
tubes.

In the future, we plan to compute this flow at higher Reynolds number and greater
resolution with the objective of looking more carefully at the development of small

scale structure. As a generator of small scale turbulence, this flow is similar to the

Taylor-Green flow (Brachet et al., t983). The present flow has some advantages for

the study of turbulence because of its development from a typical instability and the

fact that the turbulent region tends to avoid close contact with the impenetrable
boundaries.
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